Not Just Another Scare:
Toxin Additives in Your Food and Drink
by Russell L. Blaylock, M.D.
There are a growing number of clinicians and basic scientists who are convinced that excitotoxins play a critical role in the development of several neurological disorders, including migraines, seizures, infections, abnormal neural development, certain endocrine disorders, specific types of obesity, and especially the neurodegenerative diseases; a group of diseases which includes: ALS, Parkinsons disease, Alzheimers disease, Huntingtons disease, and olivopontocerebellar degeneration.
An enormous amount of both clinical and experimental evidence has accumulated over the past decade supporting this basic premise. Yet, the FDA still refuses to recognize the immediate and long term danger to the public caused by the practice of allowing various excitotoxins to be added to the food supply, such as MSG, hydrolyzed vegetable protein, and aspartame. The amount of these neurotoxins added to our food has increased enormously since their first introduction. For example, since 1948 the amount of MSG added to foods has doubled every decade. By 1972 262,000 metric tons were being added to foods. Over 800 million pounds of aspartame have been consumed in various products since it was first approved. Ironically, these food additives have nothing to do with preserving food or protecting its integrity. They are all used to alter the taste of food. MSG, hydrolyzed vegetable protein, and natural flavoring are used to enhance the taste of food so that it taste better. Aspartame is an artificial sweetener.
The public must be made aware that these toxins ( excitotoxins) are not present in just a few foods but rather in almost all processed foods. In many cases they are being added in disguised forms, such as natural flavoring, spices, yeast extract, textured protein, soy protein extract, etc. Experimentally, we know that when subtoxic ( below toxic levels) of excitotoxins are given to animals, they experience full toxicity. Also, liquid forms of excitotoxins, as occurs in soups, gravies and diet soft drinks are more toxic than that added to solid foods. This is because they are more rapidly absorbed and reach higher blood levels.
So, what is an excitotoxin? These are substances, usually amino acids, that react with specialized receptors in the brain in such a way as to lead to destruction of certain types of brain cells. Glutamate is one of the more commonly known excitotoxins. MSG is the sodium salt of glutamate. This amino acid is a normal neurotransmitter in the brain. In fact, it is the most commonly used neurotransmitter by the brain. Defenders of MSG and aspartame use, usually say: How could a substance that is used normally by the brain cause harm? This is because, glutamate, as a neurotransmitter, is used by the brain only in very , very small concentrations - no more than 8 to 12ug. When the concentration of this transmitter rises above this level the neurons begin to fire abnormally. At higher concentrations, the cells undergo a specialized process of cell death.
The brain has several elaborate mechanisms to prevent accumulation of MSG in the brain. First is the blood-brain barrier, a system that impedes glutamate entry into the area of the brain cells. But, this system was intended to protect the brain against occasional elevation of glutamate of a moderate degree, as would be found with un-processed food consumption. It was not designed to eliminate very high concentrations of glutamate and aspartate consumed daily, several times a day, as we see in modern society. Several experiments have demonstrated that under such conditions, glutamate can by-pass this barrier system and enter the brain in toxic concentrations. In fact, there is some evidence that it may actually be concentrated within the brain with prolonged exposures.
There are also several conditions under which the blood-brain barrier ( BBB) is made incompetent. Before birth, the BBB is incompetent and will allow glutamate to enter the brain. It may be that for a considerable period after birth the barrier may also incompletely developed as well. Hypertension, diabetes, head trauma, brain tumors, strokes, certain drugs, Alzheimers disease, vitamin and mineral deficiencies, severe hypoglycemia, heat stroke, electromagnetic radiation, ionizing radiation, multiple sclerosis, and certain infections can all cause the barrier to fail. In fact, as we age the barrier system becomes more porous, allowing excitotoxins in the blood to enter the brain. So there are numerous instances under which excitotoxin food additives can enter and damage the brain. Finally, recent experiments have shown that glutamate and aspartate ( as in aspartame) can open the barrier itself.
Another system used to protect the brain against environmental excitotoxins, is a system within the brain that binds the glutamate molecule ( called the glutamate transporter) and transports it to a special storage cell ( the astrocyte) within a fraction of a second after it is used as a neurotransmitter. This system can be overwhelmed by high intakes of MSG, aspartame and other food excitotoxins. It is also known that excitotoxins themselves can cause the generation of numerous amounts of free radicals and that during the process of lipid peroxidation ( oxidation of membrane fats) a substance is produced called 4-hydroxynonenal. This chemical inhibits the glutamate transporter, thus allowing glutamate to accumulate in the brain.
Excitotoxins destroy neurons partly by stimulating the generation of large numbers of free radicals. Recently, it has been shown that this occurs not only within the brain, but also within other tissues and organs as well ( liver and red blood cells). This could, from all available evidence, increase all sorts of degenerative diseases such as arthritis, coronary heart disease, and atherosclerosis,as well as induce cancer formation. Certainly, we would not want to do something that would significantly increase free radical production in the body. It is known that all of the neurodegenerative disease, such as Parkinsons disease, Alzheimers disease, and ALS, are associated with free radical injury of the nervous system.
It should also be appreciated that the effects of excitotoxin food additives generally is not dramatic. Some individuals may be especially sensitive and develop severe symptoms and even sudden death from cardiac irritability, but in most instances the effects are subtle and develop over a long period of time. While MSG and aspartame are probably not causes of the neurodegenerative diseases, such as Alzheimers dementia, Parkinsons disease, or amyotrophic lateral sclerosis, they may well precipitate these disorders and certainly worsen their effects. It may be that many people with a propensity for developing one of these diseases would never develop a full blown disorder had it not been for their exposure to high levels of food borne excitotoxin additives. Some may have had a very mild form of the disease had it not been for the exposure.
In July, 1995 the Federation of American Societies for Experimental Biology ( FASEB) conducted a definitive study for the FDA on the question of safety of MSG. The FDA wrote a very deceptive summery of the report in which they implied that, except possibly for asthma patients, MSG was found to be safe by the FASEB reviewers. But, in fact, that is not what the report said at all. I summarized, in detail, my criticism of this widely reported FDA deception in the revised paperback edition of my book, Excitotoxins: The Taste That Kills, by analyzing exactly what the report said, and failed to say. For example, it never said that MSG did not aggravate neurodegenerative diseases. What they said was, there were no studies indicating such a link. Specifically, that no one has conducted any studies, positive or negative, to see if there is a link. In other words it has not been looked at. A vital difference.
Unfortunately, for the consumer, the corporate food processors not only continue to add MSG to our foods but they have gone to great links to disguise these harmful additives. For example, they use such names a hydrolyzed vegetable protein, vegetable protein, hydrolyzed plant protein, caseinate, yeast extract, and natural flavoring. We know experimentally, as stated, when these excitotoxin taste enhancers are added together they become much more toxic. In fact, excitotoxins in subtoxic concentrations can be fully toxic to specialized brain cells when used in combination. Frequently, I see processed foods on supermarket shelves, especially frozen of diet food, that contain two, three or even four types of excitotoxins. We also know that excitotoxins in a liquid form are much more toxic than solid forms because they are rapidly absorbed and attain high concentration in the blood. This means that many of the commercial soups, sauces, and gravies containing MSG are very dangerous to nervous system health, and should especially be avoided by those either having one of the above mentioned disorders, or are at a high risk of developing one of them. They should also be avoided by cancer patients and those at high risk for cancer.
In the case of ALS, amyotrophic lateral sclerosis, we know that consumption of red meats and especially MSG itself, can significantly elevate blood glutamate, much higher than is seen in the normal population. Similar studies, as far as I am aware, have not been conducted in patients with Alzheimers disease or Parkinsons disease. But, as a general rule I would certainly suggest that persons with either of these diseases avoid MSG containing foods as well as red meats, cheeses, and pureed tomatoes, all of which are known to have high levels of glutamate.
It must be remembered that it is the glutamate molecule that is toxic in MSG ( monosodium glutamate). Glutamate is a naturally occurring amino acid found in varying concentrations in many foods. Defenders of MSG safety allude to this fact in their defense. But, it is free glutamate that is the culprit. Bound glutamate, found naturally in foods, is less dangerous because it is slowly broken down and absorbed by the gut, so that it can be utilized by the tissues, especially muscle, before toxic concentrations can build up. Therefore, a whole tomato is safer than a pureed tomato. The only exception to this, based on present knowledge, is in the case of ALS. Also, in the case of tomatoes, the plant contains several powerful antioxidants known to block glutamate toxicity.
Hydrolyzed vegetable protein should not be confused with hydrolyzed vegetable oil. The oil does not contain appreciable concentration of glutamate, it is an oil. Hydrolyzed vegetable protein is made by a chemical process that breaks down the vegetables protein structure to purposefully free the glutamate, as well as aspartate, another excitotoxin. This brown powdery substance is used to enhance the flavor of foods, especially meat dishes, soups, and sauces. Despite the fact that some health food manufacturers have attempted to sell the idea that this flavor enhancer is " all natural" and "safe" because it is made from vegetables, it is not. It is the same substance added to processed foods. Experimentally, one can produce the same brain lesions using hydrolyzed vegetable protein as by using MSG or aspartate.
A growing list of excitotoxins is being discovered, including several that are found naturally. For example, L- cysteine is a very powerful excitotoxin. Recently, it has been added to certain bread dough and is sold in health food stores as a supplement. Homocysteine, a metabolic derivative, is also an excitotoxin. Interestingly, elevated blood levels of homocysteine has recently been shown to be a major, if not the major, indicator of cardiovascular disease and stroke. Equally interesting, is the finding that elevated levels have also been implicated in neurodevelopmental disorders, especially anencephaly and spinal dysraphism ( neural tube defects). It is thought that this is the protective mechanism of action of the prenatal vitamins B12, B6, and folate when used in combination. It remains to be seen if the toxic effect is excitatory or by some other mechanism. If it is excitatory, then unborn infants would be endangered as well by glutamate, aspartate ( part of the aspartame molecule), and the other excitotoxins. Recently, several studies have been done in which it was found that all Alzheimers patients examined had elevated levels of homocysteine.
Recent studies have shown that persons affected by Alzheimers disease also have widespread destruction of their retinal ganglion cells. Interestingly, this is the area found to be affected when Lucas and Newhouse first discovered the excitotoxicity of MSG. While this does not prove that dietary glutamate and other excitotoxins cause or aggravate Alzheimers disease, it makes one very suspicious. One could argue a common intrinsic etiology for central nervous system neuronal damage and retinal ganglion cell damage, but these findings are disconcerting enough to warrant further investigations.
The Free Radical Connection
It is interesting to note that many of the same neurological diseases associated with excitotoxic injury are also associated with accumulations of toxic free radicals and destructive lipid enzymes. For example, the brains of Alzheimers disease patients have been found to contain high concentration of lipolytic enzymes, which seems to indicate accelerated membrane lipid peroxidation, again caused by free radical generation.
In the case of Parkinsons disease, we know that one of the early changes is the loss of glutathione from the neurons of the striate system, especially in a nucleus called the substantia nigra. It is this nucleus that is primarily affected in this disorder. Accompanying this, is an accumulation of free iron, which is one of the most powerful free radical generators known. One of the highest concentrations of iron in the body is within the globus pallidus and the substantia nigra. The neurons within the latter are especially vulnerable to oxidant stress because the oxidant metabolism of the transmitter-dopamine- can proceed to the creation of very powerful free radicals. That is, it can auto- oxidize to peroxide,which is normally detoxified by glutathione. As we have seen, glutathione loss in the substantia nigra is one of the earliest deficiencies seen in Parkinsons disease. In the presence of high concentrations of free iron, the peroxide is converted into the dangerous, and very powerful free radical, hydroxide. As the hydroxide radical diffuses throughout the cell, destruction of the lipid components of the cell takes place, a process called lipid peroxidation.
Using a laser microprobe mass analyzer, researchers have recently discovered that iron accumulation in Parkinsons disease is primarily localized in the neuromelanin granules ( which gives the nucleus its black color). It has also been shown that there is dramatic accumulation of aluminum within these granules. Most likely, the aluminum displaces the bound iron, releasing highly reactive free iron. It is known that even low concentrations of aluminum salts can enhance iron-induced lipid peroxidation by almost an order of magnitude. Further, direct infusion of iron into the substantia nigra nucleus in rodents can induce a Parkinsonian syndrome, and a dose related decline in dopamine. Recent studies indicate that individuals having Parkinsons disease also have defective iron metabolism.
Another early finding in Parkinsons disease is the reduction in complex I enzymes within the mitochondria of this nucleus. It is well known that the complex I enzymes are particularly sensitive to free radical injury. These enzymes are critical to the production of cellular energy. When cellular energy is decreased, the toxic effect of excitatory amino acids increases dramatically, by as much as 200 fold. In fact, when energy production is very low, even normal concentrations of extracellular glutamate and aspartate can kill neurons.
One of the terribly debilitating effects of Parkinsons disease is a condition called " freezing up", a state where the muscle are literally frozen in place. There is recent evidence that this effect is due to the unopposed firing of a special nucleus in the brain ( the subthalamic nucleus). Interestingly, this nucleus uses glutamate for its transmitter. Neuroscientist are exploring the use of glutamate blocking drugs to prevent this disorder.
And finally, there is growing evidence that similar free radical damage, most likely triggered by toxic concentrations of excitotoxins, causes ALS. Several studies have demonstrated lipid peroxidation product accumulation within the spinal cords of ALS victims. Iron accumulation has also been seen in the spinal cords of ALS victims.
Besides the well known reactive oxygen species, such as super oxide, hydroxyl ion, hydrogen peroxide, and singlet oxygen, there exist a whole spectrum of reactive nitrogen species derived from nitric oxide, the most important of which is peroxynitrate. These free radicals can attack proteins, membrane lipids and DNA, both nuclear and mitochondrial, which makes these radicals very dangerous.
It is now known that glutamate acts on its receptor via a nitric oxide mechanism.Overstimulation of the glutamate receptor can result in accumulation of reactive nitrogen species, resulting in the concentration of several species of dangerous free radicals. There is growing evidence that, at least in part, this is how excess glutamate damages nerve cells. In a multitude of studies, a close link has been demonstrated between excitotoxity and free radical generation. Others have shown that certain free radical scavengers ( anti-oxidants), have successfully blocked excitotoxic destruction of neurons. For example, vitamin E is known to completely block glutamate toxicity in vitro ( in culture). Whether it will be as efficient in vivo ( in a living animal) is not known. But, it is interesting in light of the recent observations that vitamin E slows the course of Alzheimers disease, as had already been demonstrated in the case of Parkinsons disease. There is some clinical evidence, including my own observations, that vitamin E also slows the course of ALS as well, especially in the form of D- Alpha-tocopherol. I would caution that anti-oxidants work best in combination and when use separately can have opposite, harmful, effects. That is, when antioxidants, such as ascorbic acid and alpha tocopherol, become oxidized themselves, such as in the case of dehydroascorbic acid, they no longer protect, but rather act as free radicals themselves. The same is true of alpha-tocopherol.
We know that there are four main endogenous sources of oxidants:
1. Those produced naturally from aerobic metabolism of glucose. 2. Those produced during phagocytic cell attack on bacteria, viruses, and parasites, especially with chronic infections. 3. Those produced during the degradation of fatty acids and other molecules that produce H2O2 as a by-product. ( This is important in stress, which has been shown to significantly increase brain levels of free radicals.) And 4. Oxidants produced during the course of p450 degradation of natural toxins.
And, as we have seen, one of the major endogenous sources of free radicals is from exposure to free iron. Unfortunately, iron is one mineral heavily promoted by the health industry, and is frequently added to many foods, especially breads and pastas. Copper is also a powerful free radical generator and has been shown to be elevated within the substantia nigra nucleus of Parkinsonian brains.
When free radicals are generated, the first site of damage is to the cell membranes, since they are composed of polyunsaturated fatty acid molecules known to be highly susceptible to such attack. The process of membrane lipid oxidation is known as lipid peroxidation and is usually initiated by the hydroxal radical. We know that ones diet can significantly alter this susceptibility. For example, diets high in omega 3-polyunsaturated fatty acids ( fish oils and flax seed oils) can increase the risk of lipid peroxidation experimentally. Contrawise, diets high in olive oil, a monounsaturtated oil, significantly lowers lipid peroxidation risk. From the available research.The beneficial effects of omega 3-fatty acid oils in the case of strokes and heart attacks probably arises from the anticoagulant effect of these oils and possibly the inhibition of release of arachidonic acid from the cell membrane. But, olive oil has the same antithrombosis effect and anticancer effect but also significantly lowers lipid peroxidation.
The Blood-Brain Barrier
One of the MSG industrys chief arguments for the safety of their product is that glutamate in the blood cannot enter the brain because of the blood-brain barrier ( BBB), a system of specialized capillary structures designed to exclude toxic substance from entering the brain. There are several criticisms of their defense. For example, it is known that the brain, even in the adult, has several areas that normally do not have a barrier system, called the circumventricular organs. These include the hypothalamus, the subfornical organ, organium vasculosum, area postrema, pineal gland, and the subcommisural organ. Of these, the most important is the hypothalamus, since it is the controlling center for all neuroendocrine regulation, sleep wake cycles, emotional control, caloric intake regulation, immune system regulation and regulation of the autonomic nervous system. Interestingly, it has recently been found that glutamate is the most important neurotransmitter in the hypothalamus. Therefore, careful regulation of blood levels of glutamate is very important, since high blood concentrations of glutamate can easily increase hypothalamic levels as well. One of the earliest and most consistent findings with exposure to MSG is damage to an area known as the arcuate nucleus. This small hypothalamic nucleus controls a multitude of neuroendocrine functions, as well as being intimately connected to several other hypothalamic nuclei. It has also been demonstrated that high concentrations of blood glutamate and aspartate ( from foods) can enter the so-called "protected brain" by seeping through the unprotected areas, such as the hypothalamus or circumventricular organs.
Another interesting observation is that chronic elevations of blood glutamate can even seep through the normal blood-brain barrier when these high concentrations are maintained over a long period of time. This, naturally, would be the situation seen when individuals consume, on a daily basis, foods high in the excitotoxins - MSG, aspartame and cysteine. Most experiments cited by the defenders of MSG safety were conducted to test the efficiency of the BBB acutely. In nature, except in the case of metabolic dysfunction ( Such as with ALS), glutamate and aspartate levels are not normally elevated on a daily basis. Sustained elevations of these excitotoxins are peculiar to the modern diet. ( And in the ancient diets of the Orientals, but not in as high a concentration.)
An additional critical factor ignored by the defenders of excitotoxin food safety is the fact that many people in a large population have disorders known to alter the permeability of the blood-brain barrier. The list of condition associated with barrier disruption include: hypertension, diabetes, ministrokes, major strokes, head trauma, multiple sclerosis, brain tumors, chemotherapy, radiation treatments to the nervous system, collagen-vascular diseases ( lupus), AIDS, brain infections, certain drugs, Alzheimers disease, and as a consequence of natural aging. There may be many other conditions also associated with barrier disruption that are as yet not known.
When the barrier is dysfunctional due to one of these conditions, brain levels of glutamate and aspartate reflect blood levels. That is, foods containing high concentrations of these excitotoxins will increase brain concentrations to toxic levels as well. Take for example, multiple sclerosis. We know that when a person with MS has an exacerbation of symptoms, the blood-brain barrier near the lesions breaks down, leaving the surrounding brain vulnerable to excitotoxin entry from the blood, i.e. the diet. But, not only is the adjacent brain vulnerable, but the openings act as a points of entry, eventually exposing the entire brain to potentially toxic levels of glutamate. Several clinicians have remarked on seeing MS patients who were made worse following exposure to dietary excitotoxins. I have seen this myself.
It is logical to assume that patients with the other neurodegenerative disorders, such as Alzheimers disease, Parkinsons disease, and ALS will be made worse on diets high in excitotoxins. Barrier disruption has been demonstrated in the case of Alzheimers disease.
Recently, it has been shown that not only can free radicals open the blood-brain barrier, but excitotoxins can as well. In fact, glutamate receptors have been demonstrated on the barrier itself. In a carefully designed experiment, researchers produced opening of the blood-brain barrier using injected iron as a free radical generator. When a powerful free radical scavenger ( U-74006F) was used in this model, opening of the barrier was significantly blocked. But, the glutamate blocker MK-801 acted even more effectively to protect the barrier. The authors of this study concluded that glutamate appears to be an important regulator of brain capillary transport and stability, and that overstimulation of NMDA ( glutamate) receptors on the blood-brain barrier appears to play an important role in breakdown of the barrier system. What this also means is that high levels of dietary glutamate or aspartate may very well disrupt the normal blood-brain barrier, thus allowing more glutamate to enter the brain, sort of a vicious cycle.
Relation to Cellular Energy Production
Excitotoxin damage is heavily dependent on the energy state of the cell. Cells with a normal energy generation systems that are efficiently producing adequate amounts of cellular energy, are very resistant to such toxicity. When cells are energy deficient, no matter the cause - hypoxia, starvation, metabolic poisons, hypoglycemia - they become infinitely more susceptible to excitotoxic injury or death. In fact, even normal concentrations of glutamate are toxic to energy deficient cells.
It is known that in many of the neurodegenerative disorders, neuron energy deficiency often precedes the clinical onset of the disease by years, if not decades. This has been demonstrated in the case of Huntington disease and Alzheimers disease using the PET scanner, which measures brain metabolism. In the case of Parkinsons disease, several groups have demonstrated that one of the early deficits of the disorder is an impaired energy production by the complex I group of enzymes from the mitochondria of the substantia nigra. ( Part of the Electron Transport System.) Interestingly, it is known that the complex I system is very sensitive to free radical damage.
Recently, it has been shown that when striatal neurons ( Those involved in Parkinsons and Huntingtons diseases.) are exposed to microinjected excitotoxins there is a dramatic, and rapid fall in energy production by these neurons. CoEnzyme Q10 has been shown, in this model, to restore energy production but not to prevent cellular death. But when combined with niacinamide, both cellular energy production and neuron protection is seen. I would recommend for those with neurodegenerative disorders, a combination of CoQ10, acetyl-L carnitine, niacinamide, riboflavin, methylcobalamin, and thiamine.
One of the newer revelation of modern molecular biology, is the discovery of mitochondrial diseases, of which cellular energy deficiency is a hallmark. In many of these disorders, significant clinical improvement has been seen following a similar regimen of vitamins combined with CoQ10 and L-carnitine. Acetyl L-carnitine enters the brain in higher concentrations and also increases brain acetylcholine, necessary for normal memory function. While these particular substances have been found to significantly boost brain energy function they are not alone in this important property. Phosphotidyl serine, Ginkgo Biloba, vitamin B12, folate, magnesium, Vitamin K and several others are also being shown to be important.
While mitochrondial dysfunction is important in explaining why some are more vulnerable to excitotoxin damage than others, it does not explain injury in those with normal cellular metabolism. There are several conditions under which energy metabolism is impaired. For example, approximately one third of Americans suffer from what is known as reactive hypoglycemia. That is, they respond to a meal composed of either simple sugars or carbohydrates that are quickly broken down into simple sugars ( a high glycemic index.) by secreting excessive amounts of insulin. This causes a dramatic lowering of the blood sugar.
When the blood sugar falls, the body responds by releasing a burst of epinephrine from the adrenal glands, in an effort to raise the blood sugar. We feel this release as nervousness, palpitations of our heart, tremulousness, and profuse sweating. Occasionally, one can have a slower fall in the blood sugar that will not produce a reactive release of epinephrine, thereby producing few symptoms. This can be more dangerous, since we are unaware that our glucose reserve is falling until we develop obvious neurological symptoms, such as difficulty thinking and a sensation of lightheadedness.
The brain is one of the most glucose dependent organs known, since it has a limited ability to burn other substrates such as fats. There is some evidence that several of the neurodegenerative diseases are related to either excessive insulin release, as with Alzheimers disease, or impaired glucose utilization, as we have seen in the case of Parkinsons disease and Huntingtons disease.
It is my firm belief, based on clinical experience and physiological principles, that many of these diseases occur primarily in the face of either reactive hypoglycemia or " brain hypoglycemia". In at least two well conducted studies it was found that pure Alzheimers dementia was rare in those with normal blood sugar profiles, and that in most cases Alzheimers patients had low blood sugars, and high CSF ( cerebrospinal fluid) insulin levels. In my own limited experience with Parkinsons and ALS patients I have found a disproportionately high number suffering from reactive hypoglycemia.
I found it interesting that several ALS patients have observed an association between their symptoms and gluten. That is, when they adhere to a gluten free diet they improve clinically. It may be that by avoiding gluten containing products, such as bread, crackers, cereal, pasta ,etc, they are also avoiding products that are high on the glycemic index, i.e. that produce reactive hypoglycemia. Also, all of these food items are high in free iron. Clinically, hypoglycemia will worsen the symptoms of most neurological disorders. We know that severe hypoglycemia can, in fact, mimic ALS both clinically and pathologically. It is also known that many of the symptoms of Alzheimers disease resemble hypoglycemia, as if the brain is hypoglycemic in isolation.
In studies of animals exposed to repeated mild episodes of hypoxia ( lack of brain oxygenation), it was found that such accumulated injuries can trigger biochemical changes that resemble those seen in Alzheimers patients. One of the effects of hypoxia is a massive release of glutamate into the space around the neuron. This results in rapid death of these sensitized cells. As we age, the blood supply to the brain is frequently impaired, either because of atherosclerosis or repeated syncopal episodes, leading to short periods of hypoxia. Hypoglycemia produces lesions very similar to hypoxia and via the same glutamate excitotoxic mechanism. In fact, recent studies of diabetics suffering from repeated episodes of hypoglycemia associated with over medication with insulin, demonstrate brain atrophy and dementia.
Again, it should be realized that excessive glutamate stimulation triggers a chain of events that in turn triggers the generation of large numbers of free radical species, both as nitrogen species and oxygen species. Once this occurs, especially with the accumulation of the hydroxyl ion, destruction of the lipid components of the membranes occurs, as lipid peroxidation. In addition, these free radicals damage proteins and DNA as well. The most immediate DNA damage is to the mitochondrial DNA, which controls protein expression within that particular cell and its progeny. It is suspected that at least some of the neurodegenerative diseases, Parkinsons disease in particular, are inherited in this way. But more importantly, it may be that accumulated damage to the mitochondrial DNA secondary to progressive free radical attack ( somatic mitochondrial injury) is the cause of most of the neurodegenerative diseases that are not inherited. This would result from an impaired reserve of antioxidant vitamins/minerals and enzymes, increased cellular stress, chronic infection, free radical generating metals and toxins, and impaired DNA repair enzymes.
It is estimated that the number of oxidative free radical injuries to DNA number about 10,000 a day in humans. Normally, these injuries are repaired by special repair enzymes. It is known that as we age these repair enzymes decrease or become less efficient. Also, some individuals are born with deficient repair enzymes from birth as, for example, in the case of xeroderma pigmentosum. Recent studies of Alzheimers patients also demonstrate a significant deficiency in DNA repair enzymes and high levels of lipid peroxidation products in the affected parts of the brain. It is also important to realize that the hippocampus of the brain, most severely damaged in Alzheimers dementia, is one of the most vulnerable areas of the brain to low glucose supply as well as low oxygen supply. That also makes it very susceptible to glutamate toxicity.
Another interesting finding is that when cells are exposed to glutamate they develop certain inclusions ( cellular debris) that not only resembles the characteristic neurofibrillary tangles of Alzheimers dementia, but are immunologically identical as well. Similarly, when experimental animals are exposed to the chemical MPTP, they not only develop Parkinsons disorder, but the older animals develop the same inclusions ( Lewy bodies) as see in human Parkinsons.
The Many Functions of Ascorbic Acid
The brain contains one of the highest concentrations of ascorbic acid in the body. Most are aware of its function in connective tissue synthesis and as a free radical scavenger. But, ascorbic acid has other functions that make it rather unique. Ascorbic acid in solution is a powerful reducing agent where it undergoes rapid oxidation to form dehydroascorbic acid. Oxidation of this compound is accelerated by high ph, temperature and some transitional metals, such as iron and copper. The oxidized form of ascorbic acid can promote lipid peroxidation and protein damage. This is why it is vital that you take antioxidants together, since several, such as vitamin E ( as D- alpha-tocopherol) and alpha-lipoic acid, act to regenerate the reduced form of the vitamin.
In man, we know that certain areas of the brain have very high concentrations of ascorbic acid, such as the nucleus accumbens and hippocampus. The lowest levels are seen in the substantia nigra. These levels seem to fluctuate with the electrical activity of the brain. Amphetamine acts to increase ascorbic acid concentration in the corpus striatum ( basal ganglion area) and decrease it in the hippocampus, the memory imprint area of the brain. Ascorbic acid is known to play a vital role in dopamine production as well.
One of the more interesting links has been between the secretion of the glutamate neurotransmitter by the brain and the release of ascorbic acid into the extracellular space. This release of ascorbate can also be induced by systemic administration of glutamate or aspartate, as would be seen in diets high in these excitotoxins . The other neurotransmitters do not have a similar effect on ascorbic acid release. This effect appears to be an exchange mechanism. That is, the ascorbic acid and glutamate exchange places. Theoretically, high concentration of ascorbic acid in the diet could inhibit glutamate release, lessening the risk of excitotoxic damage. Of equal importance is the free radical neutralizing effect of ascorbic acid.
There is now substantial evidence that ascorbic acid modulates the electrophysiological as well as behavioral functioning of the brain. It also attenuates the behavioral response of rats exposed to amphetamine, which is known to act through an excitatory mechanism. In part, this is due to the observed binding of ascorbic acid to the glutamate receptor. This could mean that ascorbic acid holds great potential in treating disease related to excitotoxic damage. Thus far, there are no studies relating ascorbate metabolism in neurodegenerative diseases. There is at least one report of ascorbic acid deficiency in guineas pigs producing histopathological changes similar to ALS.
It is known that as we age there is a decline in brain levels of ascorbic acid. When accompanied by a similar decrease in glutathione peroxidase, we see an accumulation of H202 and hence, elevated levels of free radicals and lipid peroxidation. In one study it was found that with age not only does the extracellular concentration of ascorbic acid decrease but the capacity of the brain ascorbic acid system to respond to oxidative stress is impaired as well.
In terms of its antioxidant activity, vitamin C and E interact in such a way as to restore each others active antioxidant state. Vitamin C scavenges oxygen radicals in the aqueous phase and vitamin E in the lipid, chain breaking, phase. The addition of vitamin C suppresses the oxidative consumption of vitamin E almost totally, probably because in the living organism the vitamin C in the aqueous phase is adjacent to the lipid membrane layer containing the vitamin E.
When combined, the vitamin C was consumed faster during oxidative stress than the vitamin E. Once the vitamin C was totally consumed, the vitamin E began to be depleted at an accelerated rate. N-acetyl-L- cysteine and glutathione can reduce vitamin E consumption as well, but less effectively than vitamin C. The real danger is when vitamin C is combined with iron. Recent experiments have shown that such combinations can produce widespread destruction within the striate areas of the brain. This is because the free iron oxidizes the ascorbate to produce the powerful free radical hydroxyascorbate. Alpha-lipoic acid acts powerfully to keep the ascorbate and tocopherol in the reduced state ( antioxidant state). As we age, we produce less of the transferrin transport protein that normally binds free iron. As a result, older individuals have higher levels of free iron within their tissues, including brain.